AEROSPACE REPORT NO.
ATR-2012(9010)-2

Agile Software Development in Defense Acquisition — A Mission Assurance
Perspective

March 23, 2012

Peter Hantos
Softwarc Acquisition and Process Department
Software Engineering Subdivision

Preparcd for:

Space and Missile Systems Center
Air Force Space Command

483 N. Aviation Blvd.

El Segundo, CA 90245-2808

Authorized by: Senior Vice President, Enginecring and Technology Group

Approved for public release; distribution unlimited.

30120523027/ o e

AEROSPACE REPORT NO.
ATR-2012(2010)-2

Agile Software Development in Defense Acquisition — A Mission Assurance
Perspective

March 23, 2012

Peter Hantos
Software Acquisition and Process Department
Software Engineering Subdivision

Prepared for:

Space and Missile Systems Center
Air Force Space Command

483 N. Aviation Blvd.

El Segundo, CA 90245-2808

Authorized by: Senior Vice President, Engineering and Technology Group

Approved for public release; distribution unlimited.

AEROSPACE REPORT NO.
ATR-2012(9010)-2

Agile Software Development in Defense Acquisition — A Mission Assurance Perspective

Approved by:

Lefrg j Déocliv}ay, Department Director

Software Acquisition and Process
Department

Computers and Software Division
Engineering and Technology Group

© The Aerospace Corporation, 2012,

SQO109(1, 5846, 86, JAB)
i

Z 10z uoneiodioy eoedsaiay oy @

uonelodion soedsoiay ay |
SOJuBH J8)ad "IQ

aAIj0adsSIad 2oueINSSY UOISSI Y — uonisinboy
asuaja(] ul Juswdo|eaa(alemyos 9|1by

SS2ING LNSSHY aoeds Buunssy

JOVdS0d3Iv

Acknowledgements

* This work would not have been possible without the support of the
following people of The Aerospace Corporation
— Asya Campbell
— Suellen Eslinger
- B. Zane Faught
— Dr. Leslie J. Holloway
* Special thanks
— Steven Kropp, Florida Department of Economic Opportunity, Labor Market
Statistics Center

* Funding Source

* The Aerospace Corporation’s Aerospace Technical Investment Program
(ATIP) Software Acquisition Long Term Capability Development (LTCD)
Project

2 () AEROSPACE

OQutline

Motivation

Objectives

Agile Software Development — The 64,000-foot View
Still Flying High — Context and Building Blocks

Fasten Your Seatbelt and Prepare for Landing
— The Life Cycle Perspective of Agile Software Development
— Agile Software Development Values
— eXtreme Programming (XP)

The State of Affairs - Agile Software Development in the Commercial,
Market-Driven World

Is Agility Really the Answer to Fix the Broken Acquisition System?
Conclusions

Acronyms

References

Backup

@AEROSPACE

Background

* Emergence of new buzzwords in software development

— Competitive pressures of the 1990s forced software companies to reexamine
their development processes and adopt radical approaches. As a result, the
industry has been flooded with buzzwords like “internet time,” “extreme,” and
‘agile,” just to mention a few

* Management buzzwords have been flooding over the past 30 years...

— There has been a “bandwagon effect” of popular management movements
such as total quality management (TQM), management by objectives,
reinventing govemment, reengineering, the balanced scorecard, lean, and
Six Sigma®. However,

* companies that claimed excellence on the basis of these practices later
turned out to be mediocre or outright failures [Paparone 2009]

— Consequently, a relatively recent, interesting recommendation to the
Pentagon brass: “Stay away from management bestsellers...” [Erwin 2009]

* Six Sigma has been registered in the U.S. Patent and Trademark Office by Motorola
(A) AEROSPACE

Motivation

* History notwithstanding...
— Agility seems to be a simple concept
— It is commonly perceived as a virtue
— Agile methods are making inroads into software development

* Despite of Ms. Erwin’s advice, Pentagon brass does not seem to be
able to stay away from management bestsellers after all ©

* Consequently, the idea of bringing agile concepts into defense
acquisition requires a closer look

@AEROSPACE

Objectives

* Readers will be able to
— Name popular agile software development methods
— Describe representative agile software development practices
— Compare agile and traditional development methods

— Assess the appropriateness of an organization’s software development
practices

— Appreciate the spint and usefulness of mission assurance in carrying out the
evaluations of the defense contractors’ software development practices

— Differentiate between agility in acquisition and agility in development

@AERospAcE

M8I/\ 100}-000'#9 9Y1 - Juswdojaaag aiemyos)iby

JIVdS0d3V

What is Agility?

* The narrow, dictionary definition [Collins 2012]:
— Quick in movement; nimble

* Agility implies both the capacity and capability to act immediately
— Agility is perceived a virtue
— In business, agility is considered an important organizational capability

* Unfortunately, in most contexts it is ill-defined or inconsistent
— Agility does not simply equate with speed, as the following examples show
* Agility may conflict with speed
— The Titanic’s ability to turn sharply is far more likely to avert disaster
than increasing its top speed charging straight ahead

* Agility requires speed but also requires balance

':,"_":j

— e.g., In martial arts
— “Lean” does not always equate with “agile”
* e.g., applying lean concepts might increase the rigidity of a process

— This rigidity results from constraining the process in order to optimize
the case “right now”

Agility is like the Elixir of Life or the Fountain of Youth — Mysterious and Elusive
~ Anonymous

@AEROSPACE

Agility in Defense

* The warfighter perspective
— A confusion exists about the need for systems enabling warfighter
agility vs. the need for agile acquisition of weapon systems
* No argument about the value of warfighter agility. However,
— Woarfighter agility can be primarily supported via weapons
design and flexible architecture
— Faster access to new weapons is not always the right solution
— The tradeoff between faster access and features is promoted,
but the underlying, hidden quality concessions are always
controversial and the associated decisions are very difficult
* The acquisition perspective
— Essential concerns exist that need to be clarified and answered
* To what extent would agile software development contribute to
the achievement of agile acquisition of weapon systems?
* How is fast procurement different from agile acquisition?
* Under what circumstances is agile software development
acceptable or even desirable for weapon systems acquisition?

For operational responsiveness we need “agile products” and not “agile processes” I

@AERDSPACE

(Our) Definition of Agile Software Development

* Agile software development methods employ practices that are
consistent with the Agile Manifesto’s value statements and principles

— There are numerous, “brand-name” methods that are considered agile*
— However, ‘new” approaches are published almost every day that are mostly
mix-and-match medleys of existing practices
* History of the Agile Manifesto™*
— Created on February 11-13, 2001 at the first meeting of agile proponents,
the 17 founding members of the Agile Alliance
* Agile values:

— “We are uncovering better ways of developing software by doing it and
helping others doing it. Through this work we have to come to value:

* Individuals and interactions over processes and tools
* Working software over comprehensive documentation
* Customer collaboration over contract negotiation

* Responding to change over following a plan.”

* See the backup charts; ** For the complete text see [Agile 2001]
() AEROSPACE

10

The Agile Manifesto Principles

* The following principles are used to select development practices
(1) Early and continuous delivery to satisfy customers
(2) Welcoming changing requirements
(3) Delivering working software frequently
(4) Close collaboration with business people
(5) Motivation of developers through trust
(6) Using face-to-face conversations to convey information
(7) Working software is the primary measure of progress
(8) Sponsors, developers, and users maintain a constant pace
(9) Continuous attention to good design
(10) Simplicity, maximizing the amount of work not done
(11) The best work is always expected from self-organizing teams
(12) Team reflection and behavior adjustment at regular intervals

" @AEROSPACE

In Contrast, Principles of Modern Software Management

* “‘Modern” software management predates the Agile Manifesto

— However, its principles are drastically different from the “traditional,” waterfall
development

— Modern management is indeed plan-based, process and tools-focused™

* Modern software management principles
(1) Architecture-first approach
(2) Iterative life-cycle process
(3) Component-based development
(4) Establish a change management environment
(5) Enhance change freedom through tools that support round-trip engineering
(6) Rigorous, model-based notation
(7) Objective quality control
(8) Demonstration-based approach to assess intermediate artifacts
(9) Intermediate releases with evolving levels of detail

Additionally, we will need to put software development in the acquisition context I

* Source: [Royce 1998]
12 (A) AEROSPACE

@AEROSPACE

Assuring Space Mission Success

s 3.
—

Still Flying High — Context and Building Blocks

Defense Acquisition (The Big “A” Acquisition Process...)

Allied
Capabilities

Threats Combatant

Commands

capabilities

(“Requirements”)

JROC
(DOD & Services)

OsD,

White House
{Executive Branch)

Congress
{Legislative Branch)

Provides
funding

DOD 5000.02 —

Legend:
DOD Department of Defense

$

Oversight

Organizations
[Acquisition Warkiorce]

Contractor

Management Tl

JCIDS Jloint Capabilities tntegration & Development System

JROC Joint Requirements Oversight Council
OSD Office of the Secretary of Defense

PPBE Planning, Programming, Budgeting & Execution

R Performance & “Time to Need” Requirements
S Allocated Funding
14

B Software
Development

Hardware
Development

/fControIs \
implementation,

flow of funding

Weapon

@AEROSPACE

Agile Software Development of New Weapon Systems

Threats

Legend:

DOD
JCIDS
JROC
osD
PPBE
R

$

Agile software development affects only the smaller context of DOD 5000.02

15

JCIDS

Allied
Capabllities

PPBE

DOD 5000.02

$

v

Management

Department of Defense

Joint Capabilities Integration & Development System

Joint Requirements Oversight Council
Office of the Secretary of Defense

Planning, Programming, Budgeting & Execution
Performance & “Time to Need” Requirements

Allocated Funding

§ Development

¢ 3 Hardware
Development

|/

Agile

Software

Development
Practices

e

Weapon
Systems

@AEROSPACE

Key Stakeholders in the Big “A” Acquisition Process

Threats

Legend:

DOD
JCIDS
JROC
0SD
PPBE
R

$

Actual
User

JCIDS

Allied
Capabilities

R osE
N

Combatant
Commands

JROC
({DOD & Services)

05D,
White House

[Executive Branch)

Congress
[Legislative Branch)

& Surrogate \

User

“ Surrogate \

Customer

p Actual \

Customer

-

Oversight
Organizations

|Acquisition Warkforce|

Department of Defense

Joint Capabilities Integration & Development System

Joint Requirements Oversight Council

Office of the Secretary of Defense

Planning, Programming, Budgeting & Execution
Performance & “Time to Need” Requirements
Allocated Funding

Contractor n
Tl

n Software
Development
H Hardware
Development

Weapon
Systems

e

Note how removed development is from the actual user and customer

16

PP
/An 5000.02
: /""'—__Surrog:ta U;h

Surrogate Customer

Developer d

| e

@AEROSPACE

Acquisition is a Contact Sport...

* Because of different motivation and behavior, there isa "t fe<i’c

tension between fae. =X
— Stakeholders of the acquisition process (e.g., Congress, DOD, etc.) <&
— Stakeholders of the oversight organizations (e.g., acquisition program offices
(APOs™), and the development organizations (contractors)
— Stakeholders of the development organizations themselves
* Management vs. developers
* Hardware developers vs. software developers

* Some hard facts to face
— Typically the conflicts are not between equals
— Different stakeholders have different political weight and capabilities, hence
in most cases “win-win” solutions are either not feasible or not pursued
* New valuation considerations for agile software development practices
— Potential impact on existing tensions in the overall acquisition system

— Loyalty factor, i.e., whose interest should be acknowledged as the most
important in a particular context

The fundamental source of tension is which stakeholder will bear the risk I

*APO is a generic term; program offices are called differently in different services
17 (A0 AEROSPACE

The Risk Pendulum — Who is Going to Bear the Risks?

Basic Funding Patterns* Cost-based

Promise
Cash flow

Customer control
Risk to contractor or developer

Risk to customer or management

Best effort Best effort Shall deliver

As incurred As incurred On delivery of item
Maximal Maximal Minimal

Low Low High

High High Low

* Note that these patterns have their formal,
conlracting equivalents and variations in
the Federal Acquisition Regulation (FAR)

Customer or
management

e]

b The Risk Pendulum <€
£

Contractor or
developer

The interesting paradox is that despite higher customer control — which is perceived to
s drive down risk - cost-based and time-based patterns are still risky... @ AEROSPACE

Clarifying Loyalties

* Actual users and the customer are far removed from actual
development
* The primary stakeholders we need to help are the people in APOs
— They play the complex role of both surrogate user and surrogate customer
by
* Providing technical input as surrogate user
* Providing contract management as surrogate customer

* The main objective of these primary stakeholders is mission success
— Of course, this is not different from the actual users’ and actual customer’s
objective
* However, only they have the direct, tactical means via mission
assurance

@AEROSPACE

18

Mission Assurance Definitions™

* Mission Success

~ The achievement by an acquired system (or system of systems) to singularly
or in combination meet not only specified performance requirements but also
expectations of users and operators in terms of safety, operability, suitability,
and supportability

— Mission success is evaluated after operational turnover, according to
program-specific timelines and criteria
* Mission Assurance

~ The disciplined application of general systems engineering, quality, and
management principles towards the goal of achieving mission success, and
towards this goal, this disciplined application provides confidence in its
achievement

, " Source: [Guarro 2007] @ AEROSPACE

Mission Assurance is Development Process-neutral

* Software mission assurance does not assume any particular software
development methodology, programming language, or tools
* Mission assurance is the exclusive responsibility of the APO, a defense
acquisition oversight organization
— Note that Air Force APQ’s enjoy direct help from multiple entities, such as
* Federally Founded Research and Development Centers (FFRDCs)
* Systems Engineering and Technical Assistance (SETA) contractors
* Systems Engineering & Integration (SE&I) contractors
* The APQO’s mission assurance activities do not assume the presence of
any similar, or similarly named (i.e., “Mission Assurance”) effort from the
contractor

— If such effort exists then, from the APQO’s perspective, it needs to be treated
as an integral part of the contractor’s software development process

Software mission assurance tasks are inherently essential for the assurance I
of any software development endeavor in defense acquisition

@AEROSPACE

21

The Main Exposure to Mission Success: Software Defects®

* Definition of a software defect
— Any software attribute or characteristic that represents a deviation from
specified attributes or characteristics
— Software defects can cause unanticipated cost and schedule overruns and in
operational systems performance deficiencies

* Definition of a software fault
— A software fault is a software defect that can result in a significant system
function failure during the execution of the code

* Hardware-induced vs. software-induced failures

— Hardware-induced failures
» Software always depends on hardware; certain hardware defects might
manifest themselves as software defects (e.g., a single-event upset
(SEU) in the onboard computer's memory or registers as a result of
naturally occurring cosmic rays, trapped protons, and solar energetic
particles)

— Software-induced failures
* Majority of such failures are rooted in software design or specification
flaws; essentially the system enters into an unanticipated and/or poorly
understood operational regime

* Definitions courtesy of Myron Hecht [Guarro 2008]
2 (A) AEROSPACE

Software-induced Failure™ Types

Pssssstlll
* Deterministic vs. random failures .
— Deterministic (‘Bohrbugs”) e
* Repeatable
* Traceable to root cause(s) under control of developer or user
— Deterministic failures can be prevented through the use of a
disciplined development process

— Random (“Heisenbugs”)
* Not repeatable; many failures can be fixed by reset
* Caused by transient states of the software (timing, buffer overflows,
gueues, memory leaks, etc.)
* Indistinguishable from SEUs, power fluctuations, or hardware timing
errors

* Recoverable vs. non-recoverable software failures (space example)

— Recoverable software failures are events that occur in spacecraft processors
that cause a loss or performance degradation of the bus or payload, which
can be restored via either onboard or ground corrective actions

Application of a disciplined development process itself is not a guarantee
for preventing random failures or mitigating recoverable failures

;‘3F0r sake of simplicity they will be referenced as software failures @ AEROSPACE

Preventing Random Software Failures

* The following approach is recommended*
— Collect software failure data during integration testing

* Use relevant operational profiles, not just requirements, to define test
plans

* Record software operating time

* Record all failure events

* Collect recovery time and data to determine the probability of recovery
— Select an appropriate software reliability model

* This model will be used to extrapolate behavior from test data
— Evaluate parameters

* Software behavior must be analyzed and validated via formal, systematic
means that take into account a variety of nominal and off-nominal
operational scenarios

— Integrate findings into the appropriate system stochastic or reliability model

Most likely the contractors use similar, complex models; verifying the
correctness of the contractors’ analyses is a critical mission assurance task

24* Source: [Guarro 2008] @ AEROSPACE

ibuipuej
10} aJedaid pue }joqieas INOA uajse]

=" JOA0 S| Buisinio apnjiyje-ybiy ayy ‘|9

SSRIONG LONSSTHY aoeds Buunssy

39vdso¥3v ()

26

The Life Cycle Perspective of Agile Software Development

@AEROSPACE

Agile Life Cycle Example: Scrum®

Daily
Scrum
Meeting

Monthly
Sprint
Meeting

-— . =

Product Backlog Backlog Tasks

* Scrum is a lean approach to software development
— Simple “inspect and adapt” management framework, using time-boxing
- Based on the scrum metaphor for new product development [Takeuchi 1986]
— No declared, method-specific development practices
— “Backlog” is a metaphor for requirements

* The process was first formalized by Ken Schwaber [Schwaber 95
o d [/ () AERGSPACE

In Contrast, an lterative-Incremental Life Cycle, IBM/RUP

IBM/RUP Phases

=
z o
= = =z
z = U /o)
0O < =) =
O o o =
= o] = a
T m 2] =
3] < < <
= ~ O 14
= 17 8] o
Core Workflows [— T 1= | 3 | Iterations
Requirements E_/"'\I _/-\' e B! ;
Analysis : = 00 T m—== m..iL. ...
Design .. ZE | =vrs ——-——-k ,
Implementation ety W S
Test ;, ______ __.._-——\-./—‘/-\/-\/—\
Deployment " AE . UE et

* The Rational Unified Process (RUP) is a comprehensive process model*
— Workflows are essentially life cycle processes with detailed descriptions
— The process encompasses the earlier outlined, “modern” principles [Royce 1998]
— It has been renamed IBM/RUP after the acquisition of Rational Corp. by IBM

.5 Discussion is based on [Jacobson 1999] @ AEROSPACE

After We Remove the Fluff (i.e., the Metaphors...)

Time-box
Calendar (“Clock”) Driven

Iterative-Incremental Development (lID)

Content (Requirements) Driven

_ LI L

|l

Factors to be compared
Iteration/Increment duration

Iteration content in the context of an increment
Difficulty of iteration planning

Difficulty of increment planning
Micro-estimation fidelity

Macro-estimation fidelity

Naturally fitting contracting pattern

IID
varying
planned upfront
moderate
difficult
moderate
high
cost-based

Time-box
set
not planned upfront
easy
difficult
higher than |ID
low

time-based %

Red flag marks the customers’ primary concerns I

29

@AEROSPACE

30

Agile Software Development Values

@AEROSPACE

Examining Agile Software Development Values

* Agile software development values revisited
— Individuals and interactions over processes and tools
— Working software over comprehensive documentation
— Customer collaboration over contract negotiation
— Responding to change over following a plan

* During the analysis the following, typical figures should be considered
— Space vehicle (embedded, large, including bus software and payload(s)):
* ~512 thousand delivered source instructions (KDSI)
— Ground systems:
* Space Shuttle software ~2,000 KDSI
* Satellite control systems software ~4,700 KDSI

— The mentioned space vehicle software development of 512 KDSI would
require roughly a 6,420 person-month effort, spreading over 41 monthes,
involving ~157 full-time equivalent software personnel

31 @AEROSPACE

Individuals and Interactions Over Processes and Tools

* Let's focus on processes first

— Agile proponents believe that one should only declare and rely on practices
instead of processes to increase the agility of software development

* A practice usually refers to an individual activity while a process is an
aggregate structure of multiple activities

— Relying only on practices certainly ensures a greater level of flexibility,
however:

* This flexibility comes with unavoidable ambiguities and may create
tension among the stakeholders

— Consider the example’s 157 developers working shoulder-to-shoulder
— Consider the problems of concurrent hardware-software development

— In pursuing mission success we found that even the use of so-called mature
processes, such as defined by the CMMI®, proved to be inadequate

The government must make a robust software standard contractually compliant I
[Eslinger 2006]

® CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University
32 (A) AEROSPACE

Lean

* The term “lean production” was coined in the 80’s [Krafcik 1988]
— The underlying ideas represent the so-called lean thinking about processes

* Current (mis)use of the term
— Lean is a popular buzz-word for general cost-cutting efforts
— Lean may be used in conjunction with Six Sigma®, another, also
manufacturing-rooted, process improvement method (“Lean Six Sigma’)
* Unfortunately, this term is misleading: “lean” does not mean applying lean
thinking to Six Sigma but using Six Sigma tools to carry out lean practices

* Key principles of lean systems thinking [Rule 2011]
— Understand value from the stakeholders’ perspective
— Identify all steps in the value stream
— Enable value to flow smoothly
— Respond to the pull of stakeholder demand
— Continuously seek perfection

* Mission assurance exposure
— Difficult to sort out what is really important due to stakeholder conflicts /ﬁ
— Lean Six Sigma rule of thumb is that usually only 5% of total process cycle
time adds value to outputs; mission assurance is valued low by developers

® Six Sigma is registered in the U.S. Patent and Trademark Office by Motorola

33

@AEROSPAcE

Major Areas in a Typical Software Development Standard”

System and Software (SW) Architecture

Human Systems Integration

Transition to Operations and
Maintenance

Interoperability and Standardization

SW Configuration Management

Reliability, Safety, Information
Assurance

SW Peer Review/Product Evaluation

Project Planning and Oversight

SW Quality Assurance

SW Development Environment

Corrective Action

System Requirements Analysis

Joint Technical and Management
Reviews

SW Requirements Analysis

Risk Management

SW Design

SW Implementation and Unit Testing

SW Management Indicators (Metrics)

Unit Integration and Testing

Security and Privacy

SW Qualification Testing

Subcontractor Management

Interface with SW IV&V Agents

The “lean” question: Which ones do not add value? Which ones to get rid off? I

:4Source: [Adams 2005]

@AEROSPACE

What Does My Dentist Know About Mission Assurance?

Sign in my dentist’s office:
“Brush only those teeth you wish to keep...”

@AEROSPACE

Individuals and Interactions Over Processes and Tools-2

* Tools

— The typical 3-4 year long development and a minimum 5-10 year long
operation and sustainment for a space vehicle require strong tools support

* Development must be based on an architecture-first approach

— Architecture modeling artifacts need to be documented with rigorous
notation and handled with appropriate (preferably visual) modeling
tools

— The dynamics of concurrent workflows by different teams working on
shared artifacts necessitates a rigorously controlled change
management environment

* Tools are also necessary to keep all the engineering information in
different formats synchronized and to support bidirectional traceability

— System requirements, software specifications, design models, source
code, executable code, scripts, test cases, test data, elc.

* True change freedom cannot be realistically achieved without the
support of an appropriate, integrated environment [Royce 1998]

Even in a stable labor force tacit knowledge sharing is not sufficient I

3 @AEROSPACE

Work Force Volatility

The work force in the information sector is very volatile™ even during
recessions when the overall net employment change is lower than average

Periods of Information Sector Federal Sector
Recession™ Hires Separations Hires Separations

2001-2002 36.5% 43.3% 19.75% 19.4%

2008-2010 23.7% 27.8% 22.13% 21.0%

* How to interpret the data
— Unfortunately, the Bureau of Labor and Statistics (BLS) is not collecting the
exact data we would be interested in, i.e., programming-related turnover in the
defense industry
— However, one can see that the turnover rate is quite high even in the federal
sector, which is considered less volatile than the private sectors
— Additionally, the BLS database does not track internal company turnover

Insisting on tacit knowledge sharing is inappropriate I
in case of such a volatile work force

47 Source. Bureau of Labor and Statistics database; ** [Bruyere 2011] @ AEROSPACE

Working Software Over Comprehensive Documentation

* Agile proponents essentially do not dispute that documentation plays an

important role in software development [Ambler 2011]

— Author makes a point from an agile perspective that customers must
understand the total cost of ownership (TCO) for a document, and they must
explicitly decide to invest in that document

— This a good advice under any circumstances, of course

* However, this value statement is about interim progress assessment

— The idea is not new, modern processes are already using the demonstration-
based approach to assess intermediate artifacts [Royce 1998]

* The concern regarding the agile approach is the impact on the customer

— Principle #8 of the Agile Manifesto represents a strong imposition on the
customer: “Sponsors, developers, and users maintain a constant pace”
Unfortunately, maintaining such a pace is not feasible on large projects

— [ssues:

* Embedding users/customers with the necessary expertise into every team
* Users/customers need to approve technical decisions in the short cycles
* Coordination of an extensive network of user/customer representatives

In short, this agile value does not scale up in a large project I

38 @AEROSPACE

Customer Collaboration Over Contract Negotiation

* As it was shown, actual users and customers are far removed from the
development organization
— JROC, DOD, and Congress are high-inertia organizations with complex,
bureaucratic processes for interaction
— These are stakeholders with different political weights; building true
collaborative relationships is difficult if not impossible
* With the current, rigid “upstream?” relationship the flexibility of the
surrogate customer is very limited
— Agile development will not improve the agility of the acquisition process; in
fact, insisting on developer agility may exacerbate the existing tensions
* |t is an unfortunate fact of life that when things do not go well,
collaborative resolution becomes less and less feasible
— The stakeholders have their own, different risk perspectives and motivations
and their differences cannot be easily reconciled via voluntary actions
* You would not remodel your kitchen without a detailed contract, so why
would you deemphasize the importance of contracts for billion-dollar
weapon system acquisitions?
— Well, actually we did it in the 1990s; it was called “Acquisition Reform”
39 (A) AEROSPACE

Responding to Change Over Following a Plan

* The essential motivation is the recognition that solution details to complex

problems cannot be successfully determined upfront
— This is not a new idea; that's why modern, but pre-agile software development
methods are adaptive and use iterative/incremental processes. How
requirements risks are handled in modern methods:
* On micro-level: The emphasis during the planning of iterations is on
facilitating a successively refined understanding of requirements
* On macro-level: New or changing requirements are expected to be handled
via evolutionary acquisition and development strategies
* Agile principle #2 (“Welcoming changing requirements”) is directly
flowing from the discussed agile value statement
— Unfortunately, this is a disingenuous statement, to say the least
* In reality, everybody likes to work on stable grounds with clear, unchanging
expectations; Don’t you?
* However, if anyone still has doubts, listen to Yogi Berra:

“If you don't know where you are going, you will I
wind up somewhere else”

40 @AEROSPAGE

Beyond Unavoidable Requirements Volatility

* Even though Yogi Berra was right, a certain level of requirements volatility
IS unavoidable

— Consequently, whatever process is used, some level of flexibility is needed to
deal with such volatility

* However, lack of control may still lead to the erosion of process discipline

— "Just because you have a detailed requirements specification that has been
reviewed and signed off, that doesn't mean that the development team will
read it, or if they do, that they will understand it, or if they do, that they will
choose to work to the specification.” ~~~ Scott W. Ambler [Ambler 2007]

Only diligent mission assurance can prevent this from happening I

@AEROSPACE

42

eXtreme Programming

@AEROSPAGE

eXtreme Programming (XP)*

* What is eXtreme Programming?
— XP is a lightweight, low-ceremony software development methodology
* Based on Kent Beck’s early experiences at Daimler Chrysler Corporation
* Why is it Extreme?
— Does not involve bungee cords; no relationship to Windows XP either... ©
— XP adopts well-known software development practices and attempts to take
them to their logical extremes
* Example: The “You Aren’'t Gonna Need It" (YAGNI) Concept
— YAGNI is a general refrain when someone suggests building
functionality for the system that is not present in the current
requirements set. The assumption is that it can be added later if it
becomes necessary
— YAGNI is supposed to be the opposite of “Big Design Upfront” (BDUF)
— However, remember the importance of diligent, strategic architecting
and design we described earlier to prevent random software failures

BDUF might have its problems, but from a mission assurance perspective I
we need at least a balanced approach; “extreme” is not really desirable

* Source: [Beck 2000] @ AEROSPACE

43

XP Practices

* The original® XP practices
— The planning game
— Small releases
— Metaphor
— Simple design
— Continuous integration
— Continuous testing
— Refactoring
— Pair programming
— Collective code ownership
— 40-hour work week
— On-site customer
— Coding standards

* This list is based on [Beck 2000
. is list is based on [Bec] @AEROSPACE

The Planning Game

* The planning game is a metaphorical name for requirements engineering
and increment/iteration planning

— It is essentially a meeting where the team is working through a stack of index
cards that contain the user stories

— Each required feature is described and elaborated in a user story (another
metaphor...)

* Responsibilities during the planning game*

Customer Developer

Define scope of the release Estimate how long each user
story will take

Define order of delivery Communicate technical impacts

of implementing requirements

Set dates and times of release Break down user stories into
tasks and allocate work

4’; Source: [Baird 2002] @ AEROSPACE

The Planning Game - 2

* However, the needed overall systems engineering process that provides the
context for software development is more complex [INCOSE 2003]

Process
recursive
. and ¥
_ Iterative _ System

Analysis &
Requirements Analysis Control

~&7

Mr. Weasel also says...

Requirements Loop

Functional
Analysis/Allocation

Design Loop

Verification

o

Process
Output

Well, Mr. User, are you ready to take direct responsibility for the progress? I

4 @AERUSPACE

Small Releases

e Start with the smallest feature set, release early and often

* Duration
— Releases may be provided every 1-3 months
* Concerns

— The earlier mentioned customer problem

* The need for excessive participation and associated responsibility in the
planning and validation of these releases are not feasible

— Scaling issue

* In large systems it might be difficult to come up with a finite, incremental
feature set to field tangible releases that the customer could appreciate

Having small, internal releases is a good engineering practice but the I
customer should not be responsible for validating these releases

@AEROSPACE

47

Metaphor

* Each project is supposed to have an organizing metaphor
— Metaphors facilitate the dialog between the user and developer

— Metaphors serve as a bridge between the terminology of the customer’s
domain and the software engineering jargon

— A metaphor of the metaphor: “Tribal Language”

* Example metaphor

— “Describing an agent-based information retrieval system, we might say that
this program works like a hive of bees, going out for pollen and bringing it
back to the hive™

This practice is quite benign (as opposed to “extreme”) and its cost is
negligible. However, its value has not been proven.

Use of metaphors do not seem to represent any risks I

* Source: [Stack 2008]

48

@AEROSPACE

Simple Design

* Keep the design as simple as possible for the moment and don't add
features that are not needed for current functionality

— The reasoning behind this practice is that if a feature is not valuable now, it
is not worth the investment until it becomes valuable

— Simple design is the practice-level implementation of the earlier introduced
YAGNI concept and the avoidance of the supposedly bad approach of BDUF

* Keeping designs simple is a good idea in general
* However, the operative phrase in this definition is “for the moment”

— Remember Heisenbugs? Prudent consideration for all the overarching,
nonfunctional requirements (like reliability, availability, etc.) requires
extensive upfront design and thorough follow-up during development

A shortsighted, “extreme” implementation of this practice might lead I
to a mission assurance exposure

49 @AERDSPACE

Continuous Integration and Continuous Testing

* Continuous Integration
— Integrate with the whole system as often as feasible
* Continuous testing
— Unit testing and acceptance testing are alternating according to the rhythm of
the process, which is driven by the duration of the applied timeboxes
* Unit tests, written by developers to test functionality as they implement it
— Conceptually, it is not different from any other approaches

— In agile development a test-driven strategy is preferred where the unit
test suite is developed before coding starts and the execution of these
tests is automated — no particular mission assurance exposure here

* Acceptance tests
— Tests themselves are supposed to be specified by the user/customer
— User/customer has to observe all tests or review test runs

* In either case the user/customer is expected to approve test results
according to the dictated process’ rhythm

« However, see our earlier interim progress tracking concerns:

This is an undue burden on the customer — continuous I
acceptance tests are not feasible in a large project

50 @AEROSPACE

Refactoring

* Refactoring is a technique to improve code without changing functionality
— It is a declared XP virtue to refactor late in the design to increase performance

* Examples
— Repartitioning the code to smaller, easier to maintain chunks
— Renaming some variables to be more descriptive
— Re-evaluating the need for temporary variables
— Extracting common behavior into a single code segment
— Candidates for refactoring may be found via the “smell test”
* Large program segments or classes
* Deeply nested code
* Long parameter list
* Presence of switch (case) statements
* Redundant code (e.g., a class that does not seem to do anything,) etc.
* Risks
— Every technique that changes a running or working system is not immune
to introducing errors, even if it is claimed that no functionality is impacted

— “Refactoring in the small” can be helpful but “refactoring in the large” does not
make sense and it is a dangerous practice

Refactoring must not be used as a replacement for proper architecting I

51 @AEROSPACE

Pair Programming

* Collaborative programming is not a new idea; it has been explored before*

* Pair programming is a collaborative technique to ensure quality code
— People are paired-up at a workstation and working together
— However, it is not like a piano duet on the computer keyboard ©

-

— The members of the pair have different roles and those roles may change
~ People may change pairs too as needed
* Pa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>